Clean Energy
Visualized: The Four Benefits of Small Modular Reactors
The following content is sponsored by the National Public Utilities Council
Visualized: The Four Benefits of Small Modular Reactors
Nuclear power has a crucial role to play on the path to net zero. Traditional nuclear plants, however, can be costly, resource-intensive, and take up to 12 years to come online.
Small modular reactors (SMR) offer a possible solution.
Created in partnership with the National Public Utilities Council, this infographic explores some of the benefits SMRs can offer their traditional counterparts. Let’s dive in.
The Four Key Benefits of SMRs, Explained
An SMR is a compact nuclear reactor that is typically less than 300 megawatts electric (MWe) in capacity and manufactured in modular units.
Here are some of the benefits they offer.
#1: Lower Costs
SMRs require a lower upfront capital investment due to their compact size.
SMRs can also match the per-unit electricity costs of traditional reactors due to various economic efficiencies related to their modular design, including design simplification, factory fabrication, and potential for regulatory harmonization.
#2: Quicker Deployment
Traditional nuclear plants can take up to 12 years to become operational. This is primarily due to their site-specific designs and substantial on-site labor involved in construction.
SMRs, on the other hand, are largely manufactured in factories and are location-independent, which minimizes on-site labor and expedites deployment timelines to as little as three years. This means they can be deployed relatively quickly to provide emissions-free electricity to the grid, supporting growing electricity needs.
#3: Siting Flexibility and Land Efficiency
SMRs have greater siting flexibility compared to traditional reactors due to their smaller size and modular design. In addition, they can utilize land more effectively than traditional reactors, yielding a higher output of electrical energy per unit of land area.
Rolls-Royce SMR, UK (Proposed) | Median-Sized U.S. Nuclear Plant | |
---|---|---|
Capacity | 470 MW | 1,000 MW |
Area Requirement | 10 Acres* | 832 Acres |
Land/Space Efficiency | 47 MW/Acre | 1.2 MW/Acre |
*Estimated area requirement
Given their flexibility, SMRs are also suitable for installation on decommissioned coal power plant sites, which can support the transition to clean electricity while utilizing existing transmission infrastructure.
#4: Safety
SMRs have simpler designs, use passive cooling systems, and require lower power and operating pressure, making them inherently safer to operate than traditional reactors.
They also have different refueling needs compared to traditional plants, needing refueling every 3–7 years instead of the 1–2 years typical for large plants. This minimizes the transportation and handling of nuclear fuel, mitigating the risk of accidents.
The Road Ahead
As of early 2024, only five SMRs are operating worldwide. But with several other projects under construction and nearly 20 more in advanced stages of development, SMRs hold promise for expanding global emission-free electricity capacity.
With that said, certain obstacles remain for the wide-scale adoption of SMRs in the United States, which was particularly apparent in the 2023 cancellation of the NuScale SMR project.
To fully realize the benefits of SMRs and advance decarbonization efforts, a focus on financial viability, market readiness, and broader utility and public support may be essential.
Learn how the National Public Utilities Council is working toward the future of sustainable electricity.
Clean Energy
Which U.S. Utilities Are Investing in Clean Energy the Most?
In this graphic, we show which U.S investor-owned utilities have allocated the most capital expenditure toward clean energy.

Which U.S. Utilities Are Investing in Clean Energy the Most?
Decarbonizing the power sector will require significant investments in clean energy as utilities replace existing fossil fuel infrastructure.
In this graphic, we show which U.S investor-owned utilities (IOUs) have allocated the most capital expenditure (CAPEX) toward carbon-free sources of electricity.
The data comes from the latest edition of the Annual Utility Decarbonization Index, created in partnership with the National Public Utilities Council, which quantifies and compares the status of decarbonization among the largest U.S. IOUs.
The Carbon-Free Investment Ranking
The Utility Decarbonization Index ranks companies on six metrics based on the latest available data, specifically those that pertain to their fuel mix, carbon emissions, and decarbonization goals.
The sixth and final metric measures the share of each utility’s planned CAPEX for carbon-free electricity generation, such as nuclear power and renewables.
Here are the top scorers out of the 47 IOUs included in the report.
Rank | Company | Share of Planned Generation CAPEX Allocated To Nuclear & Renewables |
---|---|---|
#1 | NextEra Energy | 100% |
#2 | Public Service Enterprise Group | 100% |
#3 | Avangrid | 100% |
#4 | Pacific Gas and Electric* | 96% |
#5 | Alliant Energy | 94% |
#6 | National Grid | 93% |
#7 | AES Corporation | 92% |
#8 | Constellation Energy | 90% |
#9 | WEC Energy | 90% |
#10 | Emera | 86% |
#11 | Dominion Energy* | 84% |
#12 | American Electric Power | 83% |
#13 | TransAlta | 81% |
#14 | MGE Energy | 78% |
#15 | Duke Energy | 68% |
#16 | Evergy | 68% |
#17 | DTE Energy Company | 67% |
#18 | Fortis Inc. | 67% |
#19 | Consumers Energy | 66% |
#20 | Southern Company | 63% |
*Planned CAPEX unreported, shows 2022 realized CAPEX
Avangrid climbed to first place in 2022, tying with NextEra and PSEG, who both maintained their 100% carbon-free investment plans from 2021. This marks an improvement from Avangrid’s 98% the year prior.
Meanwhile, National Grid pulled off the most significant percentage increase, from 3% to 93% from 2021 to 2022.
Overall, carbon-free investment is up 3 percentage points year-over-year from 63% to 66% for the top 47 IOUs.
Which Utilities Are Included in the Decarbonization Index?
The IOUs ranked in this year’s Utility Decarbonization Index are the 47 largest in the U.S. by their 2022 net owned and purchased electricity generations.
U.S. IOUs that had fewer than 2 million megawatt-hours (MWh) of owned generation were excluded from the report.
The 47 IOUs featured in the Index accounted for over two-thirds of the nation’s electricity generation in 2022. As a result, these utilities’ decarbonization efforts will significantly impact the 33% of U.S. emissions that come from the power sector.
Download the 2024 Annual Utility Decarbonization Report
In addition to the Decarbonization Index, there’s much more to explore in the 2024 report, including:
- Inflation Reduction Act impacts
- Market trends
- Year-to-year progressions
- Fuel mix rankings for the largest public utilities
- Gas utility emissions rankings
Are you interested in seeing the rest of the rankings? Download the 2024 NPUC Annual Utility Decarbonization Report now.
Clean Energy
Visualized: Renewable Energy Capacity Through Time (2000–2023)
This streamgraph shows the growth in renewable energy capacity by country and region since 2000.

Visualized: Renewable Energy Capacity Through Time (2000–2023)
Global renewable energy capacity has grown by 415% since 2000, or a compound annual growth rate (CAGR) of 7.4%.
However, many large and wealthy regions, including the United States and Europe, maintain a lower average annual renewable capacity growth.
This chart, created in partnership with the National Public Utilities Council, shows how each world region has contributed to the growth in renewable energy capacity since 2000, using the latest data release from the International Renewable Energy Agency (IRENA).
Renewable Energy Trends in Developed Economies
Between 2000 and 2023, global renewable capacity increased from 0.8 to 3.9 TW. This was led by China, which added 1.4 TW, more than Africa, Europe, and North America combined. Renewable energy here includes solar, wind, hydro (excluding pumped storage), bioenergy, geothermal, and marine energy.
During this period, capacity growth in the U.S. has been slightly faster than what’s been seen in Europe, but much slower than in China. However, U.S. renewable growth is expected to accelerate due to the recent implementation of the Inflation Reduction Act.
Overall, Asia has shown the greatest regional growth, with China being the standout country in the continent.
Region | 2000–2023 Growth | 10-Year Growth (2013–2023) | 1-Year Growth (2022–2023) |
---|---|---|---|
Europe | 313% | 88% | 10% |
China | 1,817% | 304% | 26% |
United States | 322% | 126% | 9% |
Canada | 57% | 25% | 2% |
It’s worth noting that Canada has fared significantly worse than the rest of the developed world since 2000 when it comes to renewable capacity additions. Between 2000 and 2023, the country’s renewable capacity grew only by 57%.
Trends in Developing Economies
Africa’s renewable capacity has grown by 184% since 2000 with a CAGR of 4%.
India is now the most populous country on the planet, and its renewable capacity is also rapidly growing. From 2000–2023, it grew by 604%, or a CAGR of 8%.
It is worth remembering that energy capacity is not always equivalent to power generation. This is especially the case for intermittent sources of energy, such as solar and wind, which depend on natural phenomena.
Despite the widespread growth of renewable energy worldwide, IRENA emphasizes that global renewable generation capacity must triple from its 2023 levels by 2030 to meet the ambitious targets set by the Paris Agreement.
Learn how the National Public Utilities Council is working toward the future of sustainable electricity.
-
Energy Shift2 years ago
Ranked: The Cheapest Sources of Electricity in the U.S.
-
Emissions10 months ago
The Most Polluted Cities in the U.S.
-
Electrification2 years ago
Visualized: How the Power Grid Works
-
Energy Shift2 years ago
Animated: 70 Years of U.S. Electricity Generation by Source
-
Clean Energy1 year ago
Breaking Down the $110 Trillion Cost of the Clean Energy Transition
-
Clean Energy2 years ago
The 30 Largest U.S. Hydropower Plants
-
Emissions1 year ago
Visualized: Global CO2 Emissions Through Time (1950–2022)
-
Climate1 year ago
Mapped: Global Temperature Rise by Country (2022-2100P)