Energy Shift
Ranked: The Cheapest Sources of Electricity in the U.S.
The following content is sponsored by the National Public Utilities Council
Ranked: The Cheapest Sources of Electricity in the U.S.
In 2022, the U.S. electricity sector’s reliance on fossil fuels resulted in a staggering 1,539 million tonnes of CO2 emissions.
With the urgent need to decarbonize, however, the question remains: can the transition from fossil fuels to emission-free electricity sources, such as solar, wind, and nuclear power, be accomplished in a financially viable manner?
In this graphic sponsored by the National Public Utilities Council, we seek answers to that question by visualizing the 2023 levelized costs of electricity of various technologies in the U.S., as calculated by Lazard.
Understanding Levelized Cost of Electricity
Levelized cost of electricity (LCOE) is a metric used to assess the cost of generating electricity from a specific power source over its lifetime.
The measure takes into account all of the costs associated with building, operating, and maintaining a power plant, as well as the amount of electricity the plant is expected to produce over its lifetime.
LCOE is a comprehensive way to compare the costs of various electricity generation technologies. It’s also worth mentioning, however, that there is a substantial amount of tax subsidies available for clean electricity generation in the U.S., including the $161 billion in clean electricity tax credits in the Inflation Reduction Act (IRA).
By leveraging these funding opportunities, the LCOE of renewables, nuclear power and energy storage systems has the potential to fall even further, bolstering their competitive edge in the market.
Ranking the Cheapest Sources of Electricity
According to Lazard’s 2023 analysis of unsubsidized LCOE in the U.S., both onshore wind and utility-scale solar photovoltaic (PV) technologies are more cost-effective than combined cycle natural gas power plants.
In the case of onshore wind, this has been true since 2015.
Technology | U.S. Levelized Cost of Electricity, $/MWh, 2023 | |
---|---|---|
Minimum | Maximum | |
Onshore wind | $24 | $75 |
Solar PV (utility scale) | $24 | $96 |
Gas combined cycle | $39 | $101 |
Onshore wind + 4-hour lithium storage | $42 | $114 |
Solar PV (utility scale) + 4-hour lithium storage | $46 | $102 |
Geothermal* | $61 | $102 |
Coal* | $68 | $166 |
Offshore wind | $72 | $140 |
Gas peaking | $115 | $221 |
Nuclear* | $141 | $221 |
*2022 LCOE adjusted for inflation.
Overall, the data shows us that most emission-free sources are cheaper than fossil fuels. There are, however, some other things to consider:
- Coupling lithium-ion batteries with intermittent energy technologies, such as wind and solar, raises costs by $6-$39/MWh. As new storage technologies, such as electrochemical batteries, mature, however, Lazard expects them to offer cost advantages to lithium-ion ones in as little as two years, especially at longer durations (6+ hours).
- While the LCOE of nuclear seems to be high, license renewals can significantly lower the marginal cost of electricity in these power plants. 88 of the 92 U.S. nuclear reactors have received such renewals in the past.
- The efficiency of generation technologies plays a big role in LCOE. This is especially evident in the high cost of gas peaking power plants.
LCOE Trends for Clean Electricity
There are various factors that can influence the LCOE of clean electricity technologies. These include:
- Financing costs, policy incentives, and government subsidies
- Geographical location, which can influence the availability of renewable resources like sunlight and wind speed
- The availability and cost of key clean energy metals and materials, such as copper, silicon, nickel, zinc and chromium
- The maturity of the technologies, the scale of deployment and the growth in demand
- The overall supply chain, including where most of these technologies are primarily manufactured (China), shipping costs, and disruptions due to global events, such as wars
As seen below, the combination of these factors has dramatically pulled down the LCOE of onshore wind and solar PV since 2009, with the exception of 2022-2023.
Source: Lazard
According to the International Energy Agency (IEA), however, most of these cost pressures related to inflation and supply chain challenges are easing in 2023, allowing these technologies to remain cost-competitive in today’s volatile fuel-price environment.
Energy Shift
Ranked: Energy Transition Scores by Country in 2024
This bar chart shows the countries’ highest and lowest energy transition index scores determined by the World Economic Forum.
Ranked: Energy Transition Scores by Country in 2024
The World Economic Forum (WEF) recently unveiled their 2024 Energy Transition Report, which assesses 120 countries around the world on their decarbonization efforts and ranks them on their Energy Transition Index (ETI).
This visualization, created in partnership with the National Public Utilities Council, shows the top 10 and bottom 10 countries based on their ETI scores.
How Does the ETI Work?
The ETI is a weighted average of two sub-indexes, system performance (60%) and transition readiness (40%), that rates countries on 46 indicators, including regulation and political engagement, innovation, and infrastructure.
Since the launch of the ETI in 2015, the global average increased from 53.4 to 56.8. However, momentum has slowed recently, and is down 0.3 points since 2022, due to the consequences of the Russian invasion of Ukraine, and surging inflation interest rates.
The Rankings
The highest energy transition scores come from advanced economies and the top three are Sweden, Denmark, and Finland. The lowest scores, however, come from sub-Saharan Africa.
Rank | Country | ETI Score |
---|---|---|
1 | 🇸🇪Sweden | 78.4 |
2 | 🇩🇰Denmark | 75.2 |
3 | 🇫🇮Finland | 74.5 |
4 | 🇨🇭Switzerland | 73.4 |
5 | 🇫🇷France | 71.1 |
6 | 🇳🇴Norway | 69.9 |
7 | 🇮🇸Iceland | 68 |
8 | 🇦🇹Austria | 67.9 |
9 | 🇪🇪Estonia | 67.8 |
10 | 🇳🇱Netherlands | 66.7 |
11 | 🇩🇪Germany | 66.5 |
12 | 🇧🇷Brazil | 65.7 |
13 | 🇬🇧United Kingdom | 65.6 |
14 | 🇵🇹Portugal | 65.4 |
15 | 🇱🇻Latvia | 65.2 |
16 | 🇪🇸Spain | 64.3 |
17 | 🇨🇳China | 64.1 |
18 | 🇱🇺Luxembourg | 64.1 |
19 | 🇺🇸United States | 64 |
20 | 🇨🇱Chile | 63.9 |
21 | 🇮🇱Israel | 63.8 |
22 | 🇦🇺Australia | 63.7 |
23 | 🇰🇷South Korea | 63.5 |
24 | 🇱🇹Lithuania | 63.2 |
25 | 🇳🇿New Zealand | 62.8 |
26 | 🇯🇵Japan | 62.4 |
27 | 🇨🇦Canada | 62.4 |
28 | 🇭🇺Hungary | 62.1 |
29 | 🇸🇮Slovenia | 61.9 |
30 | 🇨🇷Costa Rica | 61.3 |
31 | 🇵🇱Poland | 61.3 |
32 | 🇻🇳Vietnam | 61 |
33 | 🇺🇾Uruguay | 60.8 |
34 | 🇧🇪Belgium | 60.8 |
35 | 🇨🇴Colombia | 60.7 |
36 | 🇧🇬Bulgaria | 60.6 |
37 | 🇬🇷Greece | 60.5 |
38 | 🇦🇿Azerbaijan | 60.3 |
39 | 🇭🇷Croatia | 60.1 |
40 | 🇲🇾Malaysia | 60.1 |
41 | 🇮🇹Italy | 59.7 |
42 | 🇵🇾Paraguay | 59.6 |
43 | 🇦🇱Albania | 59.4 |
44 | 🇨🇿Czechia | 59.2 |
45 | 🇮🇪Ireland | 58.7 |
46 | 🇸🇻El Salvador | 58.4 |
47 | 🇵🇪Peru | 58.3 |
48 | 🇷🇴Romania | 58.3 |
49 | 🇸🇰Slovakia | 57.5 |
50 | 🇶🇦Qatar | 57.3 |
51 | 🇵🇦Panama | 57.1 |
52 | 🇦🇪United Arab Emirates | 57 |
53 | 🇲🇺Mauritius | 56.8 |
54 | 🇮🇩Indonesia | 56.7 |
55 | 🇨🇾Cyprus | 56.6 |
56 | 🇬🇪Georgia | 56.3 |
57 | 🇲🇽Mexico | 56.3 |
58 | 🇸🇦Saudi Arabia | 55.9 |
59 | 🇹🇷Türkiye | 55.8 |
60 | 🇹🇭Thailand | 55.8 |
61 | 🇲🇹Malta | 55.6 |
62 | 🇴🇲Oman | 55.5 |
63 | 🇮🇳India | 55.3 |
64 | 🇸🇬Singapore | 55 |
65 | 🇲🇦Morocco | 54.9 |
66 | 🇧🇴Bolivia | 54.8 |
67 | 🇲🇪Montenegro | 54.6 |
68 | 🇳🇦Namibia | 54.5 |
69 | 🇱🇰Sri Lanka | 54.2 |
70 | 🇰🇪Kenya | 53.6 |
71 | 🇹🇯Tajikistan | 53.6 |
72 | 🇱🇦Laos | 53.5 |
73 | 🇯🇴Jordan | 53.5 |
74 | 🇪🇨Ecuador | 53.2 |
75 | 🇪🇬Egypt | 53 |
76 | 🇺🇦Ukraine | 52.9 |
77 | 🇰🇭Cambodia | 52.9 |
78 | 🇷🇸Serbia | 52.9 |
79 | 🇦🇲Armenia | 52.7 |
80 | 🇰🇬Kyrgyzstan | 52.7 |
81 | 🇲🇰North Macedonia | 52.6 |
82 | 🇦🇷Argentina | 52.6 |
83 | 🇬🇦Gabon | 52.5 |
84 | 🇿🇦South Africa | 52.4 |
85 | 🇱🇧Lebanon | 52 |
86 | 🇦🇴Angola | 52 |
87 | 🇪🇹Ethiopia | 51.7 |
88 | 🇧🇦Bosnia and Herzegovina | 51.5 |
89 | 🇹🇳Tunisia | 51.3 |
90 | 🇨🇮Côte d'Ivoire | 51.2 |
91 | 🇩🇿Algeria | 50.9 |
92 | 🇬🇭Ghana | 50.9 |
93 | 🇿🇲Zambia | 50.9 |
94 | 🇬🇹Guatemala | 50.8 |
95 | 🇻🇪Venezuela | 50.4 |
96 | 🇧🇳Brunei | 50.3 |
97 | 🇩🇴Dominican Republic | 50.1 |
98 | 🇰🇿Kazakhstan | 50.1 |
99 | 🇹🇹Trinidad and Tobago | 49.7 |
100 | 🇳🇵Nepal | 49.6 |
101 | 🇨🇲Cameroon | 49.2 |
102 | 🇮🇷Iran | 49 |
103 | 🇧🇭Bahrain | 48.8 |
104 | 🇰🇼Kuwait | 48.6 |
105 | 🇵🇭Philippines | 48.4 |
106 | 🇭🇳Honduras | 48.3 |
107 | 🇲🇩Moldova | 48.1 |
108 | 🇳🇬Nigeria | 46.9 |
109 | 🇧🇩Bangladesh | 46.8 |
110 | 🇯🇲Jamaica | 46.6 |
111 | 🇸🇳Senegal | 46.6 |
112 | 🇿🇼Zimbabwe | 46.3 |
113 | 🇵🇰Pakistan | 46.2 |
114 | 🇳🇮Nicaragua | 46 |
115 | 🇧🇼Botswana | 45.6 |
116 | 🇲🇳Mongolia | 45.4 |
117 | 🇲🇿Mozambique | 45.3 |
118 | 🇹🇿Tanzania | 44.3 |
119 | 🇾🇪Yemen | 43.8 |
120 | 🇨🇩DRC | 42 |
However, even though sub-Saharan Africa has the lowest regional average score, individual countries are making significant progress. For example, Zimbabwe’s score has increased 33% since 2015, thanks to the increase in their hydropower capacity.
On the other hand, the ETIs of some advanced economies are declining, such as Norway, whose score decreased by 0.4 points over the past nine years. This decrease is due to rising electricity prices and a decline in renewable capacity buildout.
The Largest Economies and the Future
The world’s largest economy, the United States, has remained at 64.0 over the past year. China, however, has moved ahead to 64.1 from 2023 to 2024, thanks to significant growth in areas like batteries, EVs, and high-voltage transmission. The country also allocates the largest share of its GDP to investments in renewables, at 9%.
All countries must dramatically increase their ETI scores to prevent global warming above 1.5 degrees Celsius. While many countries, such as Norway, are stagnating in their progress, others, such as Zimbabwe, exceed expectations for their wealth, signaling the possibility for all countries to meet their climate targets.
Learn how the National Public Utilities Council is working toward the future of sustainable electricity.
Energy Shift
Mapped: The Age of Energy Projects in Interconnection Queues, by State
This map shows how many energy projects are in interconnection queues by state and how long these projects have been queued up, on average.
U.S. Energy Projects in Interconnection Queues, by State
By the end of 2023, more than 11,000 energy projects were in interconnection queues in the United States, waiting for a green-light from regional grid operators to proceed with construction.
This map, sponsored by the National Public Utilities Council, maps out the average age of active energy projects in interconnection queues by state, using data from Berkeley Lab.
Interconnection Queues, Explained
Interconnection queues are lists of energy projects that have made interconnection requests to their regional grid operators. Once submitted, these requests formally initiate the impact study process that each project goes through before grid connection, forming waiting lists for approval known as interconnection queues.
In recent years, both the number and generation capacity of queued projects have surged in the United States, along with the length of time spent in queue.
According to Berkeley Lab, the amount of generation capacity entering queues each year has risen by more than 550% from 2015 to 2023, with average queue duration rising from 3 years to 5 years the same period.
As a result of the growing backlog, a large proportion of projects ultimately withdraw from queues, leading to only 19% of applications reaching commercial operations.
The Backlog: Number of Projects and Average Wait Times
Of the 11,000 active projects in U.S. queues at the end of 2023, Texas, California, and Virginia had the most in queue; 1,208, 947, and 743, respectively.
When looking at the average ages of these projects, all three states hovered around the national average of 34 months (2.83 years), with Texas sporting 28 months, California 33, and Virginia 34.
Vermont, Minnesota, Wisconsin, and Florida, on the other hand, had the highest average queue durations; 54, 49, 47, and 46 months, respectively.
Average Queue Duration by Project Type
At the end of 2023, more than 95% of the generation capacity in active interconnection queues was for emission-free resources. The table below provides a breakdown.
Project Type | Average Queue Duration (As of 12/31/2023) | Number of Projects in Queue |
---|---|---|
Wind | 40 months | 841 |
Solar | 34 months | 4,506 |
Wind+Battery | 34 months | 76 |
Solar+Battery | 27 months | 2,377 |
Battery | 24 months | 2,818 |
Wind projects had the highest wait times at the end of 2023 with an average age of 40 months (3.33 years). Solar projects, on the other hand, made up more than 40% of projects in queue.
Overall, reducing the time that these renewable energy projects spend in queues can accelerate the transition to a low-carbon energy future.
According to the U.S. Department of Energy, enhancing data transparency, streamlining approval processes, promoting economic efficiency, and maintaining a reliable grid are some of the ways this growing backlog can be mitigated.
Learn how the National Public Utilities Council is working toward the future of sustainable electricity.
-
Electrification2 years ago
Visualized: How the Power Grid Works
-
Emissions8 months ago
The Most Polluted Cities in the U.S.
-
Energy Shift2 years ago
Animated: 70 Years of U.S. Electricity Generation by Source
-
Clean Energy1 year ago
Breaking Down the $110 Trillion Cost of the Clean Energy Transition
-
Clean Energy2 years ago
The 30 Largest U.S. Hydropower Plants
-
Clean Energy2 years ago
Breaking Down Clean Energy Funding in the Inflation Reduction Act
-
Emissions1 year ago
Visualized: Global CO2 Emissions Through Time (1950–2022)
-
Emissions2 years ago
Visualizing Global Per Capita CO2 Emissions