Connect with us

Clean Energy

What Are the Five Major Types of Renewable Energy?

Published

on

The Renewable Energy Age

This was originally published on June 8, 2022, on Elements.

Awareness around climate change is shaping the future of the global economy in several ways.

Governments are planning how to reduce emissions, investors are scrutinizing companies’ environmental performance, and consumers are becoming conscious of their carbon footprints. But no matter the stakeholder, energy generation and consumption from fossil fuels is one of the biggest contributors to emissions.

Therefore, renewable energy sources have never been more top-of-mind than they are today.

The Five Types of Renewable Energy

Renewable energy technologies harness the power of the sun, wind, and heat from the Earth’s core, and then transforms it into usable forms of energy like heat, electricity, and fuel.

The above infographic uses data from Lazard, Ember, and other sources to outline everything you need to know about the five key types of renewable energy:

Energy Source% of 2021 Global Electricity GenerationAvg. levelized cost of energy per MWh
Hydro 💧 15.3%$64
Wind 🌬 6.6%$38
Solar ☀️ 3.7%$36
Biomass 🌱 2.3%$114
Geothermal ♨️ <1%$75

Editor’s note: We have excluded nuclear from the mix here, because although it is often defined as a sustainable energy source, it is not technically renewable (i.e. there are finite amounts of uranium).

Though often out of the limelight, hydro is the largest renewable electricity source, followed by wind and then solar.

Together, the five main sources combined for roughly 28% of global electricity generation in 2021, with wind and solar collectively breaking the 10% share barrier for the first time.

The levelized cost of energy (LCOE) measures the lifetime costs of a new utility-scale plant divided by total electricity generation. The LCOE of solar and wind is almost one-fifth that of coal ($167/MWh), meaning that new solar and wind plants are now much cheaper to build and operate than new coal plants over a longer time horizon.

With this in mind, here’s a closer look at the five types of renewable energy and how they work.

1. Wind

Wind turbines use large rotor blades, mounted at tall heights on both land and sea, to capture the kinetic energy created by wind.

When wind flows across the blade, the air pressure on one side of the blade decreases, pulling it down with a force described as the lift. The difference in air pressure across the two sides causes the blades to rotate, spinning the rotor.

The rotor is connected to a turbine generator, which spins to convert the wind’s kinetic energy into electricity.

2. Solar (Photovoltaic)

Solar technologies capture light or electromagnetic radiation from the sun and convert it into electricity.

Photovoltaic (PV) solar cells contain a semiconductor wafer, positive on one side and negative on the other, forming an electric field. When light hits the cell, the semiconductor absorbs the sunlight and transfers the energy in the form of electrons. These electrons are captured by the electric field in the form of an electric current.

A solar system’s ability to generate electricity depends on the semiconductor material, along with environmental conditions like heat, dirt, and shade.

3. Geothermal

Geothermal energy originates straight from the Earth’s core—heat from the core boils underground reservoirs of water, known as geothermal resources.

Geothermal plants typically use wells to pump hot water from geothermal resources and convert it into steam for a turbine generator. The extracted water and steam can then be reinjected, making it a renewable energy source.

4. Hydropower

Similar to wind turbines, hydropower plants channel the kinetic energy from flowing water into electricity by using a turbine generator.

Hydro plants are typically situated near bodies of water and use diversion structures like dams to change the flow of water. Power generation depends on the volume and change in elevation or head of the flowing water.

Greater water volumes and higher heads produce more energy and electricity, and vice versa.

5. Biomass

Humans have likely used energy from biomass or bioenergy for heat ever since our ancestors learned how to build fires.

Biomass—organic material like wood, dry leaves, and agricultural waste—is typically burned but considered renewable because it can be regrown or replenished. Burning biomass in a boiler produces high-pressure steam, which rotates a turbine generator to produce electricity.

Biomass is also converted into liquid or gaseous fuels for transportation. However, emissions from biomass vary with the material combusted and are often higher than other clean sources.

When Will Renewable Energy Take Over?

Despite the recent growth of renewables, fossil fuels still dominate the global energy mix.

Most countries are in the early stages of the energy transition, and only a handful get significant portions of their electricity from clean sources. However, the ongoing decade might see even more growth than recent record-breaking years.

The IEA forecasts that, by 2026, global renewable electricity capacity is set to grow by 60% from 2020 levels to over 4,800 gigawatts—equal to the current power output of fossil fuels and nuclear combined. So, regardless of when renewables will take over, it’s clear that the global energy economy will continue changing.

Click for Comments

Clean Energy

Visualized: The Four Benefits of Small Modular Reactors

What advantages do small modular reactors offer compared to their traditional counterparts?

Published

on

The preview image for an infographic explaining the four benefits of small modular reactors (SMRs) over traditional nuclear reactors, highlighting SMR advantages related to costs, time, siting, and safety.

Visualized: The Four Benefits of Small Modular Reactors

Nuclear power has a crucial role to play on the path to net zero. Traditional nuclear plants, however, can be costly, resource-intensive, and take up to 12 years to come online. 

Small modular reactors (SMR) offer a possible solution. 

Created in partnership with the National Public Utilities Council, this infographic explores some of the benefits SMRs can offer their traditional counterparts. Let’s dive in. 

The Four Key Benefits of SMRs, Explained

An SMR is a compact nuclear reactor that is typically less than 300 megawatts electric (MWe) in capacity and manufactured in modular units. 

Here are some of the benefits they offer. 

#1: Lower Costs

SMRs require a lower upfront capital investment due to their compact size.

SMRs can also match the per-unit electricity costs of traditional reactors due to various economic efficiencies related to their modular design, including design simplification, factory fabrication, and potential for regulatory harmonization. 

#2: Quicker Deployment

Traditional nuclear plants can take up to 12 years to become operational. This is primarily due to their site-specific designs and substantial on-site labor involved in construction.

SMRs, on the other hand, are largely manufactured in factories and are location-independent, which minimizes on-site labor and expedites deployment timelines to as little as three years. This means they can be deployed relatively quickly to provide emissions-free electricity to the grid, supporting growing electricity needs

 #3: Siting Flexibility and Land Efficiency

SMRs have greater siting flexibility compared to traditional reactors due to their smaller size and modular design. In addition, they can utilize land more effectively than traditional reactors, yielding a higher output of electrical energy per unit of land area.

Rolls-Royce SMR, UK (Proposed)Median-Sized U.S. Nuclear Plant
Capacity470 MW1,000 MW
Area Requirement10 Acres*832 Acres
Land/Space Efficiency47 MW/Acre1.2 MW/Acre

*Estimated area requirement

Given their flexibility, SMRs are also suitable for installation on decommissioned coal power plant sites, which can support the transition to clean electricity while utilizing existing transmission infrastructure.  

 #4: Safety

SMRs have simpler designs, use passive cooling systems, and require lower power and operating pressure, making them inherently safer to operate than traditional reactors.

They also have different refueling needs compared to traditional plants, needing refueling every 3–7 years instead of the 1–2 years typical for large plants. This minimizes the transportation and handling of nuclear fuel, mitigating the risk of accidents. 

The Road Ahead

As of early 2024, only five SMRs are operating worldwide. But with several other projects under construction and nearly 20 more in advanced stages of development, SMRs hold promise for expanding global emission-free electricity capacity.

With that said, certain obstacles remain for the wide-scale adoption of SMRs in the United States, which was particularly apparent in the 2023 cancellation of the NuScale SMR project. 

To fully realize the benefits of SMRs and advance decarbonization efforts, a focus on financial viability, market readiness, and broader utility and public support may be essential.

Learn how the National Public Utilities Council is working toward the future of sustainable electricity.

Continue Reading

Clean Energy

The $3 Trillion Clean Energy Investment Gap, Visualized

In this graphic, we explore the $3 trillion clean energy investment gap visualized by sector, according to BloombergNEF data.

Published

on

The preview image for an alluvial diagram of 2023 clean energy investments by sector compared to what’s needed for net-zero 2050, indicating that there is a $3 trillion annual investment gap.

The $3 Trillion Clean Energy Investment Gap, Visualized

Global investment in the clean energy transition grew by 17% in 2023, showing resilience despite geopolitical tensions, high interest rates, and inflation. 

But was it enough to keep the world on track to hit net zero by 2050? 

To answer this question, we compare 2023 clean energy investment by sector with what’s annually needed to reach net zero by 2050, in partnership with the National Public Utilities Council

The Investment Gap, By Sector 

According to BloombergNEF data, annual global investment in the energy transition is at an all-time high. Despite this, only the electrified heat and clean industry sectors are meeting the thresholds necessary to hit net zero by 2050.

2023 InvestmentRequired Annual
Investment for Net Zero*,
2024–2030
Investment Gap
Electrified transport$632B$1,805B$1,173B
Renewable energy$623B$1,317B$694B
Electricity grids$310B$700B$390B
Electrified heat$63B$50B-$13B
Clean industry$49B$21B-$28B
Energy storage$36B$93B$57B
Nuclear energy$33B$284B$251B
Carbon capture and storage (CCS)$11B$510B$499B
Hydrogen$10B$62B$52B
TOTAL$1,767B$4,842B$3,075B

*BloombergNEF’s Net-Zero 2050 Scenario 

To stay on track for net zero by 2050, the yearly investments in electrified transport, renewable energy, power grids, and energy storage must more than double their current rates for the rest of the decade. 

Hydrogen, nuclear, and carbon capture and storage (CCS) have an even steeper hill to climb and must grow 6, 9, and 46 fold, respectively. 

The Path Forward

It’s important to note that despite the current annual investment gap of $3T, the clean energy industry continues to exhibit positive trends.

Investment in electrified transport, for instance, surpassed that in renewable energy for the first time in 2023, marking a win for the sector. 

Emerging sectors also experienced robust expansion despite being furthest off-target. Investments in hydrogen tripled to $10B, CCS nearly doubled to $11B, and energy storage witnessed a 76% increase to reach $36B in 2023. 

These encouraging developments underscore the industry’s potential to drive transformative change and pave the way for a more sustainable and resilient energy landscape in the years ahead. 

Learn how the National Public Utilities Council is working toward the future of sustainable electricity.

Continue Reading
National Public Utilities Council

Popular