Connect with us

Clean Energy

The 2022 Energy Crisis: A Tipping Point for Clean Energy

Published

on

The following content is sponsored by the National Public Utilities Council

infographic on the 2022 energy crisis and its impact on clean energy

The 2022 Energy Crisis: A Tipping Point for Clean Energy

The global energy crisis of 2022 sent shockwaves in the energy markets.

The crisis acted as a double-edged sword—on one hand, consumers felt the pinch of rising energy prices, but on the other hand, it became a turning point for clean energy, spurring action from governments to cut dependence on fossil fuels.

This infographic from the National Public Utilities Council explores how the energy crisis accelerated the growth of clean energy and nuclear power.

Shockwaves From the Energy Crisis

Although the consequences of the crisis were felt in 2022, its roots go back to 2020 when energy demand dipped during the pandemic.

Following the unprecedented fall in demand, energy markets tightened in 2021 as the global economy rebounded to grow at the fastest pace since 1973. Russia’s invasion of Ukraine escalated the situation, creating a full-scale energy crisis.

As a result, energy prices soared to their highest levels in decades, resulting in rampant inflation worldwide. This highlighted how many nations remained dependent on fossil fuels for energy, in turn creating a tipping point for clean energy.

Clean Energy Turns the Corner

Countries including the United States, the UK, and many EU member states have supercharged clean energy investment over the last two years, partly in response to the energy crisis.

Here’s how global government spending for clean energy has grown since July 2021, as tracked by the IEA:

  • $380 billion as of July 2021
  • $470 billion as of October 2021
  • $714 billion as of March 2022
  • $1,215 billion as of November 2022

European countries deployed funding for energy efficiency and low-carbon power generation (through REPowerEU) in response to natural gas supply disruptions from Russia. In August of 2022, the U.S. signed the Inflation Reduction Act into law, providing over $390 billion in clean energy and climate funding.

Consequently, clean energy technologies are growing at an unprecedented rate. The IEA forecasts that global renewable electricity capacity additions from 2022 to 2027 (2,383 GW) will nearly equal all the renewable capacity added between 2001 and 2021 (2,409 GW).

Nuclear Turnaround

Besides renewables, nuclear power has seen a resurgence as governments look for a reliable energy source to replace fossil generation.

Here’s a look at the top 10 countries by the number of prospective nuclear reactors based on the Global Nuclear Power Tracker. This includes announced, pre-construction, and under-construction reactors.

CountryNumber of Prospective Reactors% of Global Total
China 🇨🇳10341%
India 🇮🇳3213%
Russia 🇷🇺3012%
Turkey 🇹🇷125%
U.S. 🇺🇸125%
Romania 🇷🇴83%
Poland 🇵🇱62%
UK 🇬🇧62%
South Korea 🇰🇷52%
Bulgaria 🇧🇬42%

Besides the countries building and planning reactors, others have reversed their plans to phase out nuclear power:

  • Germany extended the lifetime of three plants that were set to shut down in 2022.
  • France reversed course to reduce reliance on nuclear, with a plan to build six new reactors.
  • Japan accelerated the restarts of nine reactors by winter 2022 and a further seven by summer 2023.

The impact of this accelerated clean energy deployment is already evident.

In 2022, the growth of clean energy technologies helped avoid 550 million tonnes of CO2 emissions, according to the IEA. On the other hand, a decline in nuclear power generation led to an additional 55 million tonnes in CO2 emissions, highlighting the importance of nuclear in reducing emissions.

Click here to learn more about how electric utilities and the power sector can lead on the path toward decarbonization.

Click for Comments

Clean Energy

3 Learnings for Scaling Up Wind and Solar Power

Streamlining processes, investing in infrastructure, and promoting local manufacturing can pave the way for wind and solar adoption.

Published

on

An infographic showing how streamlining processes, investing in infrastructure, and promoting local manufacturing can pave the way for wind and solar adoption

3 Learnings for Wind and Solar Power Scale-Up

To keep the increase in global temperatures to 1.5°C, the International Energy Agency (IEA) states that the world must triple its renewable power capacity by 2030.

However, swift and widespread adoption depends on the removal of various bottlenecks in project pipelines worldwide.

We’ve partnered with the National Public Utilities Council to visualize data from the IEA and the Energy Transitions Commission to highlight three areas of improvement, critical to the rapid adoption of renewables.

1. Planning and Permitting

Currently, regulatory and administrative barriers lead to lengthy project timelines worldwide.

A wind project, for example, can take 10–12 years of development, while solar projects can take four years.

The Energy Transitions Commission suggests a faster process, including quicker site mapping, permit applications, and environmental surveys.

Policymakers can help reduce project timelines by allocating land for renewables, setting permit targets, and digitalizing the permit application process. As a result, the development time for wind projects could be reduced to 4.5–5.5 years, and solar projects could be online in one year.

2. Grid Availability for Solar and Wind 

Connecting renewable energy projects to the grid has posed a challenge.

As of 2023, almost 1,500 gigawatts (GW) of wind and solar projects in advanced stages of development were still off the electricity grid. 

Excluding China and India, transmission and distribution investments have increased by only 1% annually since 2010. According to the IEA, however, government and stakeholder investment in grids must double to over $600 billion annually to meet climate targets.

3. Supply Chain Diversification

The final area for improvement, when it comes to expediting global wind and solar power scale-up, is supply chain diversification.

Currently, China heavily concentrates the global manufacturing capacity on clean energy, leading to a heavy dependency on imports for the rest of the world.

Share of Manufacturing Capacity, 2021Wind (Onshore)Wind (Offshore)Solar PV
China59%70%85%
Europe16%26%2%
North America10%0%1%
Asia Pacific9%4%11%
Central & South America5%0%0%
Africa0%0%0%
Eurasia0%0%0%
Middle East0%0%0%

Global manufacturing capacity share is calculated by averaging the global manufacturing shares of individual components (i.e., wind: tower, nacelle, blade; solar: wafers, cells, modules). Percentages may not add up to 100 due to rounding.

According to research by ONYX Insight, almost 60% of wind farm operators reported that supply chain issues were their biggest challenge over the next 2–3 years.

International collaboration and investment, however, can help diversify manufacturing outside of China. In addition, policymakers can also implement policies and incentives that encourage the growth of local manufacturing capacity for renewables. 

All in all, streamlining processes, investing in infrastructure, and promoting local manufacturing can pave the way for a cleaner, more sustainable energy future.

Download the 2023 Decarbonization Report.

Continue Reading

Clean Energy

Visualizing All the Nuclear Waste in the World

Despite concerns about nuclear waste, high-level radioactive waste constitutes less than 0.25% of all radioactive waste ever generated.

Published

on

Graphic cubes illustrating the global volume of nuclear waste and its disposal methods.

Visualizing All the Nuclear Waste in the World

Nuclear power is among the safest and cleanest sources of electricity, making it a critical part of the clean energy transition.

However, nuclear waste, an inevitable byproduct, is often misunderstood.

In collaboration with the National Public Utilities Council, this graphic shows the volume of all existing nuclear waste, categorized by its level of hazardousness and disposal requirements, based on data from the International Atomic Energy Agency (IAEA).

Storage and Disposal

Nuclear provides about 10% of global electricity generation.

Nuclear waste, produced as a result of this, can be divided into four different types:

  • Very low-level waste: Waste suitable for near-surface landfills, requiring lower containment and isolation.
  • Low-level waste: Waste needing robust containment for up to a few hundred years, suitable for disposal in engineered near-surface facilities.
  • Intermediate-level waste: Waste that requires a greater degree of containment and isolation than that provided by near-surface disposal.
  • High-level waste: Waste is disposed of in deep, stable geological formations, typically several hundred meters below the surface.

Despite safety concerns, high-level radioactive waste constitutes less than 0.25% of total radioactive waste reported to the IAEA.

Waste ClassDisposed (cubic meters)Stored (cubic meters)Total (cubic meters)
Very low-level waste758,802313,8821,072,684
Low-level waste1,825,558204,8582,030,416
Intermediate level waste671,097201,893872,990
High-level waste3,9605,3239,283

Stored and disposed radioactive waste reported to the IAEA under the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. Data is from the last reporting year which varies by reporting country, 2019-2023.

The amount of waste produced by the nuclear power industry is small compared to other industrial activities.

While flammable liquids comprise 82% of the hazardous materials shipped annually in the U.S., radioactive waste accounts for only 0.01%.

Learn how the National Public Utilities Council is working towards the future of sustainable electricity.

Continue Reading
National Public Utilities Council

Popular