Connect with us

Clean Energy

Mapped: U.S. Wind Electricity Generation by State

Published

on

Mapping U.S. Wind Energy by State

This was originally published on April 25, 2022, on Elements.

Wind power is the most productive renewable energy source in the U.S., generating nearly half of America’s renewable energy.

But wind doesn’t blow fairly across the nation, so which states are contributing the most to U.S. wind energy generation?

This map uses data from the EIA to show how much wind electricity different U.S. states generate, and breaks down wind’s share of total electricity generation in top wind power producing states.

Wind Electricity Generation by State Compared

America’s wind energy generating states are all primarily located in the Central and Midwest regions of the nation, where wind speeds are highest and most consistent.

Texas is the runaway leader in wind, generating over 92 Terawatt-hours of electricity during a year, more than the next three top states (Iowa, Oklahoma, and Kansas) combined. While Texas is the top generator in terms of wind-powered electricity, wind only makes up 20% of the state’s total electricity generation.

StateWind Electricity Generation (Terawatt hours)Wind's Share of Net Electricity Generation
Texas92.9 TWh20%
Iowa34.1 TWh58%
Oklahoma29.6 TWh35%
Kansas23.5 TWh43%
Illinois17.1 TWh10%
California13.6 TWh7%
North Dakota13.2 TWh31%
Colorado12.7 TWh23%
Minnesota12.2 TWh 22%
Nebraska8.7 TWh24%

Data from Feb 2020-Feb 2021
Source: EIA

Meanwhile, wind makes up a much larger share of net electricity generation in states like Iowa (58%), Oklahoma (35%), and Kansas (43%). For both Iowa and Kansas, wind is the primary energy source of in-state electricity generation after overtaking coal in 2019.

The U.S. also has 10 states with no wind power generating facilities, all primarily located in the Southeast region.

How Does Wind Energy Work?

Humans have been harnessing wind power for millennia, with windmills originally relying on wind to pump water or mill flour.

Today’s wind turbines work similarly, with their large blades generating electricity as wind causes them to rotate. As these blades are pushed by the wind, a connected internal shaft that is attached to an electric generator also turns and generates electricity.

Wind power is one of the safest sources of energy and relies on one key factor: wind speeds. When analyzing minimum wind speeds for economic viability in a given location, the following annual average wind speeds are needed:

  • Small wind turbines: Minimum of 4 meters per second (9 miles per hour)
  • Utility-scale wind turbines: Minimum of 5.8 meters per second (13 miles per hour)

Source: EIA

Unsurprisingly, the majority of America’s onshore wind turbine infrastructure is located in the middle of the nation, where wind speeds are highest.

Growing America’s Wind Turbine Capacity

While wind energy only made up 0.2% of U.S. electricity generating capacity in 1990, it is now essential for the clean energy transition. Today, wind power makes up more than 10% of U.S. electricity generating capacity, and this share is set to continue growing.

Record-breaking wind turbine installations in 2020 and 2021, primarily in the Central and Midwest regions, have increased U.S. wind energy generation by 30% to 135.1 GW.

In 2020, the U.S. increased wind turbine capacity by 14.2 gigawatts, followed by another 17.1 gigawatts in 2021. This year is set to see another 7.6 GW come online, with around half of 2022’s added capacity located in Texas.

After two years of record-breaking wind turbine installations, 2021’s expiration of the U.S. production tax credit is likely to dampen the rate of future installations.

Click for Comments

Clean Energy

What Are the Five Major Types of Renewable Energy?

Renewable energy is the foundation of the ongoing energy transition. What are the key types of renewable energy, and how do they work?

Published

on

The Renewable Energy Age

This was originally published on June 8, 2022, on Elements.

Awareness around climate change is shaping the future of the global economy in several ways.

Governments are planning how to reduce emissions, investors are scrutinizing companies’ environmental performance, and consumers are becoming conscious of their carbon footprints. But no matter the stakeholder, energy generation and consumption from fossil fuels is one of the biggest contributors to emissions.

Therefore, renewable energy sources have never been more top-of-mind than they are today.

The Five Types of Renewable Energy

Renewable energy technologies harness the power of the sun, wind, and heat from the Earth’s core, and then transforms it into usable forms of energy like heat, electricity, and fuel.

The above infographic uses data from Lazard, Ember, and other sources to outline everything you need to know about the five key types of renewable energy:

Energy Source% of 2021 Global Electricity GenerationAvg. levelized cost of energy per MWh
Hydro 💧 15.3%$64
Wind 🌬 6.6%$38
Solar ☀️ 3.7%$36
Biomass 🌱 2.3%$114
Geothermal ♨️ <1%$75

Editor’s note: We have excluded nuclear from the mix here, because although it is often defined as a sustainable energy source, it is not technically renewable (i.e. there are finite amounts of uranium).

Though often out of the limelight, hydro is the largest renewable electricity source, followed by wind and then solar.

Together, the five main sources combined for roughly 28% of global electricity generation in 2021, with wind and solar collectively breaking the 10% share barrier for the first time.

The levelized cost of energy (LCOE) measures the lifetime costs of a new utility-scale plant divided by total electricity generation. The LCOE of solar and wind is almost one-fifth that of coal ($167/MWh), meaning that new solar and wind plants are now much cheaper to build and operate than new coal plants over a longer time horizon.

With this in mind, here’s a closer look at the five types of renewable energy and how they work.

1. Wind

Wind turbines use large rotor blades, mounted at tall heights on both land and sea, to capture the kinetic energy created by wind.

When wind flows across the blade, the air pressure on one side of the blade decreases, pulling it down with a force described as the lift. The difference in air pressure across the two sides causes the blades to rotate, spinning the rotor.

The rotor is connected to a turbine generator, which spins to convert the wind’s kinetic energy into electricity.

2. Solar (Photovoltaic)

Solar technologies capture light or electromagnetic radiation from the sun and convert it into electricity.

Photovoltaic (PV) solar cells contain a semiconductor wafer, positive on one side and negative on the other, forming an electric field. When light hits the cell, the semiconductor absorbs the sunlight and transfers the energy in the form of electrons. These electrons are captured by the electric field in the form of an electric current.

A solar system’s ability to generate electricity depends on the semiconductor material, along with environmental conditions like heat, dirt, and shade.

3. Geothermal

Geothermal energy originates straight from the Earth’s core—heat from the core boils underground reservoirs of water, known as geothermal resources.

Geothermal plants typically use wells to pump hot water from geothermal resources and convert it into steam for a turbine generator. The extracted water and steam can then be reinjected, making it a renewable energy source.

4. Hydropower

Similar to wind turbines, hydropower plants channel the kinetic energy from flowing water into electricity by using a turbine generator.

Hydro plants are typically situated near bodies of water and use diversion structures like dams to change the flow of water. Power generation depends on the volume and change in elevation or head of the flowing water.

Greater water volumes and higher heads produce more energy and electricity, and vice versa.

5. Biomass

Humans have likely used energy from biomass or bioenergy for heat ever since our ancestors learned how to build fires.

Biomass—organic material like wood, dry leaves, and agricultural waste—is typically burned but considered renewable because it can be regrown or replenished. Burning biomass in a boiler produces high-pressure steam, which rotates a turbine generator to produce electricity.

Biomass is also converted into liquid or gaseous fuels for transportation. However, emissions from biomass vary with the material combusted and are often higher than other clean sources.

When Will Renewable Energy Take Over?

Despite the recent growth of renewables, fossil fuels still dominate the global energy mix.

Most countries are in the early stages of the energy transition, and only a handful get significant portions of their electricity from clean sources. However, the ongoing decade might see even more growth than recent record-breaking years.

The IEA forecasts that, by 2026, global renewable electricity capacity is set to grow by 60% from 2020 levels to over 4,800 gigawatts—equal to the current power output of fossil fuels and nuclear combined. So, regardless of when renewables will take over, it’s clear that the global energy economy will continue changing.

Continue Reading

Clean Energy

Mapped: Nuclear Reactors in the U.S.

This infographic shows all of America’s 92 nuclear reactors.

Published

on

Mapped: Nuclear Reactors in the U.S.

This was originally posted on June 8, 2022, on Elements.

The United States is the world’s largest producer of nuclear power, representing more than 30% of the world’s nuclear power generation.

America has 92 reactors in operation, providing about 20% of the country’s electricity.

The above infographic uses data from the International Atomic Energy Agency to showcase every single nuclear reactor in America.

Nuclear Development

Nuclear power in the U.S. dates back to the 1950s.

George Westinghouse produced the first commercial pressurized water reactor in 1957 in Shippingport, Pennsylvania. The technology is used in approximately half of the 450 nuclear power reactors worldwide.

Today, over 30 different power companies across 30 states operate nuclear facilities in the U.S., and most nuclear power reactors are located east of the Mississippi River.

Illinois has more reactors than any state, with 11 reactors and the largest total nuclear electricity generation capacity at about 11,582 megawatts (MW). Meanwhile, the largest reactor is at the Grand Gulf Nuclear Station in Port Gibson, Mississippi, with a capacity of about 1,500 MW.

Most American reactors in operation were built between 1967 and 1990. Until 2013 there had been no new constructions started since 1977, according to the World Nuclear Association.

Nuclear power reactors in America receive 40-year operating licenses from the U.S. Nuclear Regulatory Commission (NRC), with companies able to apply for 20-year extensions. The oldest operating reactor, Nine Mile Point Unit 1 in New York, began commercial operation in December 1969. The newest reactor to enter service, Watts Bar Unit 2, came online in 2016.

The Future of Nuclear Power in the U.S.

U.S. nuclear power’s capacity peaked in 2012 at about 102,000 MW, with 104 operating nuclear reactors operating.

US nuclear generation and capacity

Since nuclear plants generate nearly 20% of U.S. electricity and about half of the country’s carbon‐free electricity, the recent push from the Biden administration to reduce fossil fuels and increase clean energy will require significant new nuclear capacity.

Today, there are two new reactors under construction (Vogtle 3 and 4) in Georgia, expected to come online before 2023.

Furthermore, some of the Inflation Reduction Act provisions include incentives for the nuclear industry. Starting in 2024, for example, utilities will be able to get a credit of $15 per megawatt-hour for electricity produced by existing nuclear plants. Nuclear infrastructure projects could also be eligible for up to $250 billion worth of loans to update, repurpose, and revitalize energy infrastructure that has stopped working.

Continue Reading
National Public Utilities Council

Popular